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6-(2,4-Dioxopentyl)-2,2-trimethyl-4H-1,3-dioxin-4-one on reflux in toluene gave MeCOCH2COCH2

COCH@C@O, which cyclized to 6-(2-oxopropyl)-4-hydroxy-2H-pyran-2-one or was trapped with alcohols
to produce resorcylate esters. The method was used for the synthesis of both enantiomers of montagnetol
and erythrin.

� 2009 Elsevier Ltd. All rights reserved.
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Figure 1. Natural products containing the orsellinic acid unit.
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The orsellinic acid unit 1 occurs widely in natural products,
including montagnetol (2) and the anti-oxidant1 erythrin (3), both
isolated from the lichen Roccella montagnei (Fig. 1).2 The structures
of montagnetol (2) and erythrin (3) were confirmed by synthesis,3

although the absolute stereochemistry has not yet been assigned.
Herein, we report a convergent, novel synthesis of diketo-1,3-
dioxinone 10, its varied cyclization reactions, and its application
to the synthesis of both enantiomers of (+)-montagnetol (2) and
(+)-erythrin (3) thereby determining the absolute configuration
of these natural products.

Recently, we reported efficient biomimetic syntheses of bioac-
tive resorcylate natural products 4 via thermolysis, ketene trap-
ping, and aromatization, starting from dioxinones 5 (Scheme 1).4

In the process of optimizing the aromatization step in the syn-
thesis of these natural products, a model system, diketo-1,3-dioxi-
none 10 was examined. It was found that 10 can undergo different
cyclization reactions depending on the reaction conditions.

Dioxinone 10 was synthesized by thermolysis of commercially
available dioxinone 6, which underwent a retro-Diels–Alder5 reac-
tion at 90 �C to form acyl-ketene 7, which was trapped with benzo-
triazole 8 to form amide 9 in quantitative yield.6 Subsequent
crossed Claisen condensation7 via reaction of the lithium enolate
from dioxinone 6 with amide 9 gave diketo-1,3-dioxinone 10 as
a 5:95 mixture of keto–enol tautomers in 53% yield over two steps
(Scheme 2).8

Dioxinone 10 undergoes cyclization using triethylamine,
1,4-diazabicyclo(2.2.2)octane, or N,N-4-dimethylaminopyridine to
give the benzo[1,3]dioxinone 11 (Scheme 3). Alternatively, ther-
molysis in toluene containing methanol and aromatization with
cesium carbonate followed by acidification gave the resorcylate
13 (87%). Finally, thermolysis of dioxinone 10 alone in toluene
solution gave the pyrone 14 (68%).
ll rights reserved.

. Barrett).
The thermolytic ketene generation, trapping, and aromatization
were applied to the total synthesis of (+)-montagnetol (2) and
(+)-erythrin (3), respectively.

Thermolysis of dioxinone 10 in the presence of benzyl-pro-
tected erithritols 15a10 and 15b gave the triketo-esters 16a and
16b, respectively.11 NMR analysis in CDCl3 showed these com-
pounds to exist as mixtures of keto and enol tautomers.12 Aldol
cyclization and aromatization followed by hydrogenolysis of the
benzyl groups gave 18 and (+)-montagnetol (2), respectively
(Scheme 4).

Reaction between dioxinone 10 and phenol 17a at 110 �C failed
to give the corresponding aryl triketo-ester, indicating that the
4

Scheme 1. Retrosynthetic approach to build 6-alkyl-2,4-dihydroxybenzoic acid
unit 4.
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Scheme 3. Different cyclization reactions of diketo-1,3-dioxinone 10.
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Scheme 4. Synthesis of (�)-montagnetol (18) and (+)-montagnetol (2). (see above-
mentioned reference for further information.)
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Scheme 5. Synthesis of (�)-erythrin (21) and (+)-erythrin (3). (see above-
mentioned reference for further information.)
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Scheme 2. Synthesis of diketo-1,3-dioxinone 10.
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phenol in 17a was of insufficient nucleophilicity. Consequently, a
more classical approach was applied starting from the protected
orsellinic acid 1913 which underwent an esterification reaction
with phenol 17a or 17b using activation with trifluoroacetic
anhydride14 to provide the diesters 20a and 20b, respectively. Deb-
enzylation by hydrogenolysis afforded 21 and 3, respectively
(Scheme 5).
The two enantiomers of montagnetol, 18 and 2, were examined
for their optical rotations, compared with the natural product,
showing 2 (2R,3S) to have the true configuration. Both enantiomers
(�)-erythrin (21) and (+)-erythrin (3) were compared with an
authentic sample of erythrin, and chiral HPLC analysis was fully
consistent with the natural product configuration being (2R,3S)-
erythrin (3).
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